Math 579 Fall 2013 Exam 4 Solutions

1. Prove that $\binom{2 n}{n}$ is composite for all integers $n \geq 2$.

Combinatorial proof: We pair each subset of size n from [2n] with its complement, which is a different subset of size n. Hence such subsets come in pairs, and there are therefore an even number of them.
2. Calculate $\sum_{0 \leq k \leq 19}\binom{3-k}{4}$.

We first use upper negation $(4 \in \mathbb{Z})$ to get $\binom{3-k}{4}=(-1)^{4}\binom{4-(3-k)-1}{4}=\binom{k}{4}$. We now use summation on the upper index $\left(4,19 \in \mathbb{N}_{0}\right)$ to get $\sum_{0 \leq k \leq 19}\binom{k}{4}=\binom{40}{5}=15,504$.
3. For $n \in \mathbb{N}$, calculate $\sum_{k} k^{2}\binom{n}{k}^{2}$.

By absorption $(k \in \mathbb{Z})$, we have $k\binom{n}{k}=n\binom{n-1}{k-1}$ so our sum becomes $n^{2} \sum_{k}\binom{n-1}{k-1}^{2}$. We could either apply a variant of Vandermonde that we proved in class, or use symmetry $(n \in \mathbb{N})$ on one of the two binomial coefficients to get $n^{2} \sum_{k}\binom{n-1}{k-1}\binom{n-1}{n-k}$, and apply Vandermonde $(-1, n \in \mathbb{Z})$ now. Either way we get $n^{2}\binom{2 n-2}{n-1}$.
4. For $n \in \mathbb{N}_{0}$, calculate $\sum_{k \geq 0} \frac{1}{k+1}\binom{n}{k}(-1)^{k+1}$.

This problem is about reindexing, twice. We first reindex the absorption identity to get $\frac{1}{n+1}\binom{n+1}{k+1}=\frac{1}{k+1}\binom{n}{k}$. Our sum becomes $\frac{1}{n+1} \sum_{k \geq 0}\binom{n+1}{k+1}(-1)^{k+1}$. We now reindex this $\operatorname{sum}(v=k+1)$ to get $\frac{1}{n+1} \sum_{v \geq 1}\binom{n+1}{v}(-1)^{v}$. This is almost exactly the binomial theorem (which applies because $n \in \mathbb{N}_{0}$); all that's missing is the first term. Hence our sum is $\frac{1}{n+1}\left((-1+1)^{n+1}-1\right)=\frac{-1}{n+1}$.
5. Calculate $\sum_{k}(-1)^{k} k\binom{10+k}{3}\binom{10}{k}$.

Note that the sum is really for $k \in \mathbb{N}_{0}$, by considering $\binom{10}{k}$. We first use absorption $(k \in \mathbb{Z})$ to rewrite $k\binom{10}{k}=10\binom{9}{k-1}$. We use symmetry $\left(10+k \in \mathbb{N}_{0}\right)$ to rewrite $\binom{10+k}{3}=\binom{10+k}{7+k}$. We now use upper negation $(7+k \in \mathbb{Z})$ to rewrite $\binom{10+k}{7+k}=$ $(-1)^{7+k}\binom{7+k-(10+k)-1}{7+k}=-(-1)^{k}\binom{-4}{7+k}$. Putting it all together, our sum becomes $-10 \sum_{k}\binom{-4}{7+k}\binom{7+k}{k-1}$. Finally, we are ready for Vandermonde $(7+k, k-1 \in \mathbb{Z})$, which gives $-10\binom{5}{6}=0$. Whew!

