Math 579 Fall 2013 Exam 4 Solutions

1. Prove that $\binom{2n}{n}$ is composite for all integers $n \ge 2$.

Combinatorial proof: We pair each subset of size n from [2n] with its complement, which is a different subset of size n. Hence such subsets come in pairs, and there are therefore an even number of them.

2. Calculate $\sum_{0 \le k \le 19} \binom{3-k}{4}$.

We first use upper negation $(4 \in \mathbb{Z})$ to get $\binom{3-k}{4} = (-1)^4 \binom{4-(3-k)-1}{4} = \binom{k}{4}$. We now use summation on the upper index $(4, 19 \in \mathbb{N}_0)$ to get $\sum_{0 \le k \le 19} \binom{k}{4} = \binom{20}{5} = 15,504$.

3. For $n \in \mathbb{N}$, calculate $\sum_{k} k^2 {n \choose k}^2$.

By absorption $(k \in \mathbb{Z})$, we have $k\binom{n}{k} = n\binom{n-1}{k-1}$ so our sum becomes $n^2 \sum_k \binom{n-1}{k-1}^2$. We could either apply a variant of Vandermonde that we proved in class, or use symmetry $(n \in \mathbb{N})$ on one of the two binomial coefficients to get $n^2 \sum_k \binom{n-1}{k-1} \binom{n-1}{n-k}$, and apply Vandermonde $(-1, n \in \mathbb{Z})$ now. Either way we get $n^2 \binom{2n-2}{n-1}$.

4. For $n \in \mathbb{N}_0$, calculate $\sum_{k \ge 0} \frac{1}{k+1} \binom{n}{k} (-1)^{k+1}$.

This problem is about reindexing, twice. We first reindex the absorption identity to get $\frac{1}{n+1} \binom{n+1}{k+1} = \frac{1}{k+1} \binom{n}{k}$. Our sum becomes $\frac{1}{n+1} \sum_{k \ge 0} \binom{n+1}{k+1} (-1)^{k+1}$. We now reindex this sum (v = k + 1) to get $\frac{1}{n+1} \sum_{v \ge 1} \binom{n+1}{v} (-1)^v$. This is almost exactly the binomial theorem (which applies because $n \in \mathbb{N}_0$); all that's missing is the first term. Hence our sum is $\frac{1}{n+1} ((-1+1)^{n+1} - 1) = \frac{-1}{n+1}$.

5. Calculate $\sum_{k} (-1)^k k \binom{10+k}{3} \binom{10}{k}$.

Note that the sum is really for $k \in \mathbb{N}_0$, by considering $\binom{10}{k}$. We first use absorption $(k \in \mathbb{Z})$ to rewrite $k\binom{10}{k} = 10\binom{9}{k-1}$. We use symmetry $(10 + k \in \mathbb{N}_0)$ to rewrite $\binom{10+k}{3} = \binom{10+k}{7+k}$. We now use upper negation $(7 + k \in \mathbb{Z})$ to rewrite $\binom{10+k}{7+k} = (-1)^{7+k}\binom{7+k-(10+k)-1}{7+k} = -(-1)^k\binom{-4}{7+k}$. Putting it all together, our sum becomes $-10\sum_k \binom{-4}{7+k}\binom{9}{k-1}$. Finally, we are ready for Vandermonde $(7 + k, k - 1 \in \mathbb{Z})$, which gives $-10\binom{6}{5} = 0$. Whew!